
Automatically finding undocumented ISP

commands in the NXP LPC microcontroller

family

Kevin Valk1

Supervisor: Roel Verdult2

1 Radboud University
kevin@kevinvalk.nl
2 Radboud University
rverdult@cs.ru.nl

Abstract

This research shows the importance of security checks on embedded systems, not only in
the firmware but also the bootloader. Preliminary research on the NXP LPC 2148 micro-
controller bootloader, shows that it contains an undocumented feature that can be used to
bypass security. However, the undocumented feature has some basic protection, so it is not
an immediate threat. This does raise the question, if there are more undocumented features
inside the NXP LPC microcontroller family. This research shows to what extend this analyses
can be automated. A Python script is developed for IDA to fully automate this analyses
with a very generic approach, that should support as many different NXP LPC bootloaders,
perhaps even all of them. Finally, the results section shows the output of the script on five
different bootloaders from the NXP LPC family. All of these bootloaders contain the same
undocumented feature. This shows that (semi-)automatic analyses of bootloaders are just as
important as (semi-)automatic analyses of firmware in general.

1 Introduction

Embedded systems are computer systems that are designed for a specific goal inside a machine
or electrical system. Embedded systems always have a hardware software co-design. A modern
washing machine is a great example of an embedded system. Looking at the history of washing
machines, it did not always had electronics components. However, nowadays it is hard to think
of a washing machine that does not use electronics to turn on the water, rotate the drum, make
beeps when its done and there are many more advanced features. These embedded devices are
getting more and more integrated within our lives and the embedded devices also get smarter
and more powerful every day. More importantly, with the upcoming of the internet of things,
most of these embedded devices are connected to the internet [4]. It is not even a far fetched
idea, to see washing machines hooked up to the internet, making it possible to turn on and
control your washing machine from an app on your mobile phone.

In 2014, a study showed that many embedded systems, that are connected to the internet,
had in there software one ore more vulnerabilities [6]. The news and the scientific community
also frequently publishes stories about embedded systems with broken security or other privacy
and security problems. This shows the severe state of security in embedded devices.

Every company has to make money of there products and is thus, inherit reluctant to share
its secrets with others, even for security reviews. Thus, the need to test security in devices
which are not open source, is very important. Especially, the parts of the software that will
communicate with the outside world, bugs or exploits in these parts of the system can have
severe consequences [13, 8]. Most of the time, incoming communication is interpreted through
parsers, these parsers do not only have to be fool proof, but should never contain more then
necessarily and it should obviously never contain backdoors.

Currently, there is research being done that focuses on (semi-)automatic Parser Identifica-
tion and Analyses (PIA) in embedded systems [5]. However, embedded systems often contain
a small piece of software which also communicates with the outside world, this is called a
bootloader. A bootloader is responsible for the initial setup of the hardware and software and

1

mailto:kevin@kevinvalk.nl
mailto:rverdult@cs.ru.nl

can be used to communicate with the chip on the lowest level. This can be used to update or
install the firmware on the chip, debug the chip and other low level work on the chip. This
shows that bootloaders do not differ from normal embedded software and should also be very
secure as they not only communicate with the outside world, but can have full control over
the embedded system. To investigate this hypotheses, preliminary research is required into
how bootloaders work and how they communicated. This will show, to what extend these
bootloaders should also be included in research into (semi-)automatic security analyses in
embedded systems [9, 11, 5, 7, 12].

To this end, this research will focus on analysing a bootloader. The results of this research
can then be used in the research into PIA [5]. As a starting point, the microcontroller family
called LPC from NXP is chosen [3]. The LPC family is chosen because all chips use bootloaders
that can communicate with the outside world and the LPC family currently exists out of more
then 250 microcontrollers.

1.1 LPC2148

We had access to the BlueBoard-LPC214x which can been seen in figure 1. The manufacturer
of this board is NGX Technologies1 and the microcontroller controlling this board is the
LPC2148 from NXP [10].

Figure 1: BlueBoard-LPC214x from NXP

The ease of access to this board made it a perfect target for the research on the bootloader.
The bootloader is 12 kB in size and can be found remapped from the on-chip flash memory
at address 0x7FFFD000 to 0x80000000. It was a trivial task to dump the bootloader through
JTAG.

While the LPC2148 is extensively documented with a 354 page document [10], the boot-
loader itself is not an open source project. Because of this, we reversed the bootloader accord-
ing the documentation and looked for any discrepancies.

1.1.1 Reversing

The LPC2148 bootloader (in this section, referred to as “bootloader”) is reversed with IDA
Pro [2] in a static fashion, so no dynamic analyses is done. The bootloader exists out of 106
functions, most of functions are rather small. To better facilitate reversing, all known memory
segments were mapped in IDA from the documentation, this can be found in chapter 2 from
the documentation.

According to the boot process flowchart (section 21.4.14 in the documentation), the Code
Read Protection (CRP) is checked early in the boot process. The address of the CRP is
publicly known, namely address 0x000001FC and there are three external references to this
CRP address. The second external reference is inside the entry point function (referred to as
“initialize” function). This was checked by comparing the logic of the initialize function to
the first steps of the boot process flowchart and the fact, that the initialize function itself, was
never called within the bootloader. This made it clear that the initialize function was indeed
the entrypoint of the LPC2148 microcontroller.

From this point on, it was easy to map the boot process flowchart inside the bootloader
binary by using external references, access to memory segments and RAM access. This process

1http://shop.ngxtechnologies.com/product_info.php?products_id=28

2

http://shop.ngxtechnologies.com/product_info.php?products_id=28

was continued by reversing more functions and documenting them. A partial list of reversed
functions can been seen in figure 2.

Figure 2: A partial list of reversed function from the LPC2148 bootloader

Inside the bootloader code, there was no real strange behaviour, aside from some strange
compiler optimization and four variables that where stored in reversed memory. However,
inside the In System Programmer (ISP) command handler there was an undocumented com-
mand.

1.2 In System Programmer

According to the LPC2148 documentation, the definition of an ISP is, “ISP is programming or
reprogramming the on-chip flash memory, using the boot loader software and a serial port. This
can be done when the part resides in the end-user board” [10] and this definition holds for any
general ISP. It is not possible to change the embedded bootloader in the LPC microcontrollers,
meaning, that the bootloader is also available on all systems in production. This makes the ISP
in general a very interesting target. Certainly because of the preliminary research shows that
there is an undocumented command inside the bootloader. The ISP is available on virtually
all LPC microcontroller bootloaders and we hypothesize, that, bootloaders in the LPC family
will be very similar, but further research has to point this out.

ISP Command Usage
Unlock U <Unlock Code>

Set Baud Rate B <Baud Rate> <stop bit>

Echo A <setting>

Write to RAM W <start address> <number of bytes>

Read Memory R <address> <number of bytes>

Prepare sector for write P <start sector number> <end sector number>

Copy RAM to Flash C <Flash address> <RAM address> <number of bytes>

Go G <address> <Mode>

Erase sector(s) E <start sector number> <end sector number>

Blank check sector(s) I <start sector number> <end sector number>

Read Part ID J

Read Boot code version K

Compare M <address1> <address2> <number of bytes>

Table 1: LPC2148 supported ISP commandos according the documentation [10]

3

The LPC2148 should support exactly 13 ISP commands, the commands can be seen
in table 1. However, in the reversed bootloader, there was another command, which we
call “isp gpio write”. This function can be called like T <address> <number of bytes>

<width> <strobe> through the serial port. The function that is responsible for handling this
command can be found in appendix A. In essence, the T command is exactly the same as the
W command (write to RAM). However, T can also write to RAM at addresses from 0x40000000

to 0x40000200, this can not be done with the normal write to RAM command. This first RAM
segment, contains important variables that are being used by watchdog, protection, the ISP
itself and other initialization sub routines to correctly boot the microcontroller. This could be
abused to bypass protection or change the chip while this was not intended.

The impact of this undocumented feature is small, because of an extra layer of protection
that is built in the ISP, namely, CRP. This prevents, some or all commandos to be executed.
Do note, that this T command is only protected by a single if statement. This if statement is
only ran once at boot. If one would glitch this single check, full access to the chip could be
obtained by using the T command to remove the CRP all together.

1.3 Code Read Protection

The ISP itself is protected by a very minimalistic Access Control List (ACL) over all the ISP
commands. CRP is a 4 byte value, that resides in the flash at address 0x000001FC. The first
thing the microcontroller does when it powers on, is to copy this value from flash into RAM
at address 40000128. There are four different values possible for the CRP, the value defines
to what extend the ISP is available or if it is available at all. When CRP has another value
then the possible CRP values, then there is effectively no CRP. The different values and there
corresponding behaviour, can been seen in table 2.

Name Pattern State
NO CRP Arbitrary Everything can be accessed
NO ISP 0x4E697370 ISP can not be accessed

CRP1 0x12345678

JTAG is disabled and the ISP is in the following state:
W Write to RAM can not access RAM below

0x40000200

C Copy RAM to flash can not write to sector 0
E Erase can erase Sector 0 only when all sectors are

selected for erase
R Read command is disabled
T Write to RAM from GPIO command is disabled
G Go command is disabled
M Compare command is disabled

CRP2 0x87654321

JTAG is disabled and the ISP is in the following state:
E Erase only allows erasure of all user sectors
R Read command is disabled
T Write to RAM from GPIO command is disabled
G Go command is disabled
M Compare command is disabled
W Write to RAM is disabled
C Copy RAM to flash is disabled

CRP3 0x43218765 JTAG is disabled and the ISP can not be entered if a valid
user code is present in flash sector 0. If there is no valid
user code present CRP3 behaves like CRP2.

Table 2: Code Read Protection levels according the documentation [10], augmented from the
reversed bootloader

1.4 NPX LPC microcontroller family

According to the Flash Magic supported devices page, the NXP LPC family has more then 250
difference LPC microcontrollers [1]. Random sampling of the data sheets from the different mi-
crocontrollers, shows that all these chips contain some form of an ISP. This immediately raises
the question, if all these ISP implementations contain the undocumented T command or other

4

undocumented “features”. This leads us to the main question we want to address in this paper:

To what extend is it possible to automatically find the different ISP commands inside
a bootloader from the NXP LPC microcontroller family?

If there would be a way to automatically get all supported ISP commands from any NXP
LPC family microcontroller, it would be trivial to compare the supported commands to the
official documentation. This would make it easier to automatically analyse NXP LPC mi-
crocontrollers for possible backdoors or undocumented features. It also makes it possible to
compare different LPC chips to each other. Further research into specific ISP command for
security analyses is also much easier, as it one can find the correct location of the handler with
the script.

2 Automated ISP analyses

ISP is supported way back to chips made in 2001 (LPC700). However, the first documentation
that has extensive information about the ISP is found in the LPC900 series and up. From
that moment on, all LPC uses the same encoding for there ISP communication, namely UU
encode. This fact can be used for automatic searching, namely, all ISP UART communication
ends with <crlf>.

2.1 Switch structure

The target we initial analysed is the LPC2148. The corresponding bootloader uses a switch
statement to parse all difference possible ISP commands. Scanning for switch statements that
only have capital letters as switch cases would be a trivial solution to our research question.
However, there are many ways to implement switch statements and more importantly, com-
pilers can optimise switch statements in many different ways. It can happen that the compiler
rewrites switch statements into if statements, or sometimes even more advanced optimisation
are done, for example using an array of function pointers to directly jump to the corresponding
handler. This makes scanning for the switch structures not a viable strategy when trying to
apply the scanner on other bootloaders.

2.2 Call flow analyses

Because of compiler optimisations and the thousands of different ways to write code, it would
be better to create a strategy that does not scan on specific statements but exploits other
information that hardly change. Looking at what functions call other functions and having
a few reference points in the call, one can deduce a lot of information about the program.
Information obtained from reversing a few different bootloaders, shows that this is a viable
strategy to scan for the ISP handlers. The current strategy exists out of the following steps:

• Find all functions that first do something with \r and then with \n. Exactly what they
do is irrelevant, so all operands are scanned for those specific values.

– For the function that has the most external references, it is assumed it is the
“uart0 puts” function.

• Find all functions that are referenced only once (this is another observation from the
available bootloaders).

– For all these functions, check if they call the “uart0 puts” function, if so, add them
to a candidate list.

– For all candidates, make a list of the most called functions, from the three first
functions called in the candidate function, it is assumed that this is some sort of
sanitize or argument getter function for the ISP handler.

– For all candidates, check if they call this sanitize function, if so, add them to an ISP
handler list.

– The ISP handler list now contains all ISP handlers.

Doing this by hand is not a viable solution, so it is required to automate this task. To
achieve this, IDAPython is used.

5

2.3 IDAPython

Automating the call flow analyses is highly desirable as it is not suited for humans. IDA Pro
was used for our general reversing and IDA Pro also support automated analyses with Python
through the so called IDAPython plugin2. This plugin makes it possible to use any and all
functions that are used inside IDA from a Python script. Writing an Python script that does
all the steps given in section 2.2 is trivial. In appendix B a possible analyser script can be
seen, that uses this strategy to search for all ISP handlers.

3 Results

There was access to seven different bootloaders from the LPC family. The results of executing
the Python script described in section 2.3 on the different bootloader can be seen in table 3.

LPC Status Note
LPC11U35 FAIL Unable to correctly load the dump, was unable to find the

ISP handler manually
LPC1114 PASS All non trivial ISP handler functions found
LPC1347 FAIL Exact same problem as the LPC11U35
LPC1768 PASS All non trivial ISP handler functions found
LPC1778 PASS All non trivial ISP handler functions found
LPC2138 PASS All non trivial ISP handler functions found
LPC2148 PASS All non trivial ISP handler functions found

Table 3: Results of scanning the different LPC bootloaders

The script performs really well in most of the bootloaders. However, it fails at the
LPC11U35 and the LPC1347. Currently it is not clear why exactly but it looks like the
problem is not in the script but in the bootloader dump itself. Manual reversing of the boot-
loader does not show any ISP handler logic, while the corresponding documentations do show
that these microcontrollers support ISP in the same way the other chips do.

Name Address
isp gpio write 0x1FFF0634

sub 1FFF06CC 0x1FFF06CC

sub 1FFF0740 0x1FFF0740

sub 1FFF07D0 0x1FFF07D0

sub 1FFF08B4 0x1FFF08B4

sub 1FFF0958 0x1FFF0958

sub 1FFF09A4 0x1FFF09A4

sub 1FFF09D6 0x1FFF09D6

sub 1FFF0A86 0x1FFF0A86

sub 1FFF0ABC 0x1FFF0ABC

sub 1FFF0B22 0x1FFF0B22

sub 1FFF0BEA 0x1FFF0BEA

Table 4: Output on the LPC1768

Name Address
isp gpio write 0x1FFF02A4

sub 1FFF034E 0x1FFF034E

sub 1FFF03C0 0x1FFF03C0

sub 1FFF0450 0x1FFF0450

sub 1FFF0552 0x1FFF0552

sub 1FFF05F4 0x1FFF05F4

sub 1FFF063E 0x1FFF063E

sub 1FFF066E 0x1FFF066E

sub 1FFF071A 0x1FFF071A

sub 1FFF0752 0x1FFF0752

sub 1FFF07B4 0x1FFF07B4

sub 1FFF0868 0x1FFF0868

Table 5: Output on the LPC1768

2https://code.google.com/p/idapython/

6

Name Address
isp gpio write 0x1FFF02A0

sub 1FFF034A 0x1FFF034A

sub 1FFF03BC 0x1FFF03BC

sub 1FFF044C 0x1FFF044C

sub 1FFF054E 0x1FFF054E

sub 1FFF05F2 0x1FFF05F2

sub 1FFF063C 0x1FFF063C

sub 1FFF066C 0x1FFF066C

sub 1FFF0716 0x1FFF0716

sub 1FFF074E 0x1FFF074E

sub 1FFF07B0 0x1FFF07B0

sub 1FFF087C 0x1FFF087C

Table 6: Output on the LPC1778

Name Address
isp gpio write 0x1FFF0494

sub 1FFF054C 0x1FFF054C

sub 1FFF05C6 0x1FFF05C6

sub 1FFF065A 0x1FFF065A

sub 1FFF0722 0x1FFF0722

sub 1FFF07BC 0x1FFF07BC

sub 1FFF080E 0x1FFF080E

sub 1FFF0878 0x1FFF0878

sub 1FFF08F8 0x1FFF08F8

sub 1FFF0932 0x1FFF0932

sub 1FFF099E 0x1FFF099E

sub 1FFF0A5E 0x1FFF0A5E

Table 7: Output on the LPC2138

Name Address
isp gpio write 0x7FFFD488

isp compare 0x7FFFD540

isp blank check sector 0x7FFFD5BA

isp erase sector 0x7FFFD64E

isp copy ram to flash 0x7FFFD716

isp prepare sector for write operation 0x7FFFD7B0

isp echo 0x7FFFD802

isp set baud rate 0x7FFFD86C

isp unlock 0x7FFFD8EC

isp go 0x7FFFD926

isp read memory 0x7FFFD992

isp write to ram 0x7FFFDA52

Table 8: Output on the LPC2148 after it was reversed

Tables 4, 5, 6 and 7 show the output of the script when running the script on the corre-
sponding bootloaders. No preprocessing was done what so ever to get these results. Comparing
these tables to table 8 shows no difference in the ISP handler apart from the normal changes
in addresses, which are expected. Table 8 is the output of the script on the LPC2148 after
reversing the that bootloader ISP manually. Checking if the undocumented T command was
present was done, by manually inspecting the functions in the different bootloaders. The
isp gpio write is present in each bootloader, while the function is not mentioned in the cor-
responding documents. This raises the idea that this undocumented command is present in
more LPC bootloaders, further research has to point out exactly how many bootloaders are
not build to specifications.

4 Conclusion

This research has shown that even the smallest and the lowest level of codes should be checked
on security issues. The undocumented T command that has been found within the seven
bootloaders from the NXP LPC microcontroller show this. In this case there is no big damage
to current released products that uses these chips, as the T command has the same protection
as similar commands. Still, there should never be commands in there that are not in the
documentation as they serve no purpose and could sometimes be abused.

(Semi-)Automatic analyses should not only focus on firmware of embedded systems but
also on there corresponding bootloaders. Because it turns out that the bootloader can also
communicate with the outside world and that this preliminary research shows that these
bootloaders can also contain bugs, undocumented features and perhaps even backdoors.

7

References

[1] Flash magic device overview. http://www.flashmagictool.com/supporteddevices.

html.

[2] IDA Pro website. https://www.hex-rays.com/products/ida/.

[3] LPC microcontrollers website. http://www.nxp.com/products/microcontrollers/.

[4] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer Network,
54(15):2787–2805, Oct 2010.

[5] L. Cojocar and R. Verdult. PIA: Parsers Identification and Analysis in Embedded Sys-
tems. to appear.

[6] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis. A Large-Scale Anal-
ysis of the Security of Embedded Firmwares. In USENIX Security Symposium, August
2014. https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-

paper-costin.pdf.

[7] D. Davidson, B. Moench, S. Jha, and T. Ristenpart. FIE on firmware: Finding vulnera-
bilities in embedded systems using symbolic execution. pages 463–478, 2013.

[8] L. Duflot, Y.-A. Perez, and B. Morin. What if you can’t trust your network card?
In Proceedings of the 14th international conference on Recent Advances in Intrusion
Detection, RAID’11, pages 378–397. Springer-Verlag, 2011.

[9] Y. Li, J. M. McCune, and A. Perrig. VIPER: verifying the integrity of PERipherals’
firmware. In Proceedings of the 18th ACM conference on Computer and communications
security, CCS ’11, pages 3–16. ACM, 2011.

[10] NXP. LPC2148 ARM7 Based Microcontroller, 2005. http://www.keil.com/dd/chip/

3880.htm.

[11] C. Wysopal and C. Eng. Static detection of application backdoors. Black Hat, Aug 2007.

[12] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’ Firmwares. In Network and
Distributed System Security (NDSS) Symposium, NDSS 14, February 2014. http:

//s3.eurecom.fr/tools/avatar/.

[13] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass, A. Francillon, T. Goodspeed,
M. Gupta, and I. Koltsidas. Implementation and implications of a stealth hard-drive
backdoor. In Proceedings of the 29th Annual Computer Security Applications Conference,
pages 279–288. ACM, 2013. http://doi.acm.org/10.1145/2523649.2523661.

8

http://www.flashmagictool.com/supporteddevices.html
http://www.flashmagictool.com/supporteddevices.html
https://www.hex-rays.com/products/ida/
http://www.nxp.com/products/microcontrollers/
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-costin.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-costin.pdf
http://www.keil.com/dd/chip/3880.htm
http://www.keil.com/dd/chip/3880.htm
http://s3.eurecom.fr/tools/avatar/
http://s3.eurecom.fr/tools/avatar/
http://doi.acm.org/10.1145/2523649.2523661

A Decompiled T command

/**

* ISP GPIO write commando for the LPC2148

* T <address > <number of bytes > <width > <strobe >

* - address: address to start writing to (0 x40000000 < address < 0x40008000)

* - number of bytes: the number of bytes to write to SRAM

* - width: amount of bits to read from GPIO , 8 for bytes , 16 for words

* - strobe: boolean should a strobe be used (PIN7 low and then high again)

*

* Reads from the GPIO IO pins a byte or a word and writes this to given

* address. The address is increased and this is done for a number of times.

*/

void __fastcall isp_gpio_write(__int64 init1 , int init2 , int init3)

{

__int32 ret; // r4@1

_BYTE *ascii; // r0@8

unsigned int v5; // r0@14

unsigned int v6; // r0@14

unsigned int v7; // r0@15

unsigned int arg2_4 [2]; // [sp+0h] [bp -20h]@1

unsigned int width; // [sp+8h] [bp -18h]@1

unsigned int arg1; // [sp+Ch] [bp -14h]@1

// Arguments are unused

*(_QWORD *) arg2_4 = init1;

width = init2;

arg1 = init3;

// Arg2: How many bytes are read from GPIO

ret = checked_atoi(arg_two , arg2_4 , 0x64 , init1) & 0xFF;

if (!ret) {

// Arg1: Address to write to

ret = checked_atoi(arg_one , &arg1 , 0x67 , arg2_4 [0]) & 0xFF;

if (!ret) {

// arg3: Width , 8 bit mode , or 16 bit mode

ret = checked_atoi(arg_three , &width , 0x69 , 0) & 0xFF;

if (width == 8 || width == 16 && !ret) {

// Arg4: Strobe on (non zero) or off (0)

ret = checked_atoi(arg_four , &arg2_4 [1], 0x69 , 0) & 0xFF;

} else {

ret = PARAM_ERROR;

}

}

}

// Returns a pointer to isp_command [15] = {0x30 , 0x00} OR to ascii

// printed error code (probably)

ascii = to_ascii(ret , isp_command , 15);

uart0_puts(ascii);

if (!ret) {

// Do while we have number of bytes left (arg2)

while (arg2_4 [0]) {

// If arg4 is non zero wait for GPIO_IO0PIN to synchronise (strobe)

if (arg2_4 [1])

{

while (!(GPIO_IO0PIN & 0x80)); // Wait for PIN7 to be low

while (GPIO_IO0PIN & 0x80); // Wait for PIN7 to be high

}

// Read the GPIO pins as a BYTE and save it to the given pointer in memory

if (width == 8) { // 8 bit mode (so 8 GPIO pins and 1 byte in memory)

v5 = arg1;

*(_BYTE *)arg1 = BYTE1(GPIO_IO0PIN);

arg1 = v5 + 1;

v6 = arg2_4 [0] - 1;

} else { // 16 bit mode (so 16 GPIO pins and 2 bytes in memory)

v7 = arg1;

*(_WORD *)arg1 = (unsigned int)GPIO_IO0PIN >> 8;

arg1 = v7 + 2;

v6 = arg2_4 [0] - 2;

}

arg2_4 [0] = v6;

}

}

}

9

B NXP LPC ISP analyser

import idaapi

import idascript

from idaapi import *

from idc import *

from idautils import *

def has_lfcr_op(ea , chr):

for i in range(0, 4):

if idc.GetOperandValue(ea, i) == ord(chr):

return True

return False

Observation: all UART communication has to end with \r\n

Assumption 1: Finding a function that has \r and \n as an operand will have

something to do with UART communication

Assumption 2: The function with the most XrefsTo will be uart0_puts as

uart0_puts is used much more then decode protocol

def find_uart0_puts ():

candidates = {}

for f in Functions ():

function = get_func(f)

heads = Heads(function.startEA ,function.endEA)

lf = False

cr = False

for head in heads:

if isCode(GetFlags(head)):

if not lf and has_lfcr_op(head , ’\r’):

cr = True

if cr and has_lfcr_op(head , ’\n’):

lf = True

if lf and cr:

candidates[len(list(XrefsTo(function.startEA)))] = function

keys = sorted(candidates , reverse=True)

if len(keys) >= 1:

return candidates[keys [0]]. startEA

return None

Observation: all ISP commands start with a capital letter

Assumption 1: Finding switch tables with only capital letters as cases

will probably be the ISP handler

def find_isp_switch_table ():

data = []

for f in Functions ():

function = get_func(f)

buf = jumptable_info_t ()

heads = Heads(function.startEA ,function.endEA)

for head in heads:

if get_switch_info_ex(head) is None:

continue

Variables

sw = get_switch_info_ex(head)

cases = []

defaults = []

Get all switches from base address

sc = calc_switch_cases(sw.jumps , sw)

for idx in xrange(len(sc.cases)):

cur_case = sc.cases[idx]

for cidx in xrange(len(cur_case)):

if sc.targets[idx] != sw.defjump:

cases.append ((cur_case[cidx], sc.targets[idx]))

else:

defaults.append ((cur_case[cidx], sc.targets[idx]))

cases = sorted(cases , key=lambda case: case [0])

Figure out if all cases are only capital characters

if all(chr(case [0]). isupper () for case in cases):

data.append(cases)

return data

10

Observation: all ISP handlers return results through uart0_puts

Assumption 1: All handlers have only one external reference

Assumption 2: All handlers have at least one argument and a

function to sanitize and/or get it

def find_non_trivial_isp_handlers ():

global uart0_puts

global checked_atoi

candidates = []

for f in Functions ():

function = idaapi.get_func(f)

function_refs = list(XrefsTo(f))

We only want functions that are called just once!!

if len(function_refs) == 1:

found = False

for x in [x for x in FuncItems(function.startEA)]:

for xref in XrefsFrom(x):

if xref.iscode:

if xref.to == uart0_puts:

found = True

if found: break

if found:

candidates.append(function)

Assumption 1: The majority will call the sanitizer

function one or more times , so if there is a minority that

does not call this function , they are not ISP handlers

Assumption 2: The first few function call inside these ISP

handlers will be sanitizer functions. Go through all ISP

handlers and count what the most called function is in the

first 3 calls.

sanitizers = {}

for c in candidates:

callNo = 0

for x in [x for x in FuncItems(c.startEA) if idaapi.is_call_insn(x)]:

callNo += 1

for xref in XrefsFrom(x, idaapi.XREF_FAR): # Will be ONE

if xref.iscode:

sanitizers[xref.to] = sanitizers[xref.to]+1 if xref.to in sanitizers else 1

if callNo >= 3:

break

if len(sanitizers) <= 0:

return []

checked_atoi = sorted(sanitizers , key=sanitizers.get , reverse=True)[0]

Remove all functions that do not call sanitizer function

isp_handlers = []

for c in candidates:

found = False

for x in [x for x in FuncItems(c.startEA) if idaapi.is_call_insn(x)]:

for xref in XrefsFrom(x, idaapi.XREF_FAR):

if xref.iscode:

if xref.to == checked_atoi:

found = True

if found:

isp_handlers.append(c)

return isp_handlers

Entry point

uart0_puts = find_uart0_puts ()

checked_atoi = None

if uart0_puts == None:

print "Was unable to find uart0_puts , this is required for further analyses!"

else:

print "Scanning for an ISP handler switch table ..."

switches = find_isp_switch_table ()

if len(switches) >= 1:

for cases in switches:

for e in cases:

print " case %s: goto 0x%x" % (chr(e[0]), e[1])

11

else:

print " did not find ISP handler switch table!"

print ""

print "Scanning for ISP handlers that have arguments ..."

handlers = find_non_trivial_isp_handlers ()

if len(handlers) >= 1:

for function in handlers:

print " handler %s at 0x%08X" % \

(GetFunctionName(function.startEA), function.startEA)

else:

print " did not find any ISP handler , so this one uses a really different" \

"system , or dump is not loaded correctly!"

print ""

12

	Introduction
	LPC2148
	Reversing

	In System Programmer
	Code Read Protection
	NPX LPC microcontroller family

	Automated ISP analyses
	Switch structure
	Call flow analyses
	IDAPython

	Results
	Conclusion
	Decompiled T command
	NXP LPC ISP analyser

